
3rd NASA Symposium on VLSI Design 1991

N94-18346
3.2.1

Performance of Defect-Tolerant
Set-Associative Cache Memories I

J. F. Frenzel

Department of Electrical Engineering

University of Idaho, Moscow, Idaho 83843

jfrenzel@groucho.mr c.uidaho.edu, 208-885-7888

Abstract- Increased use of on-chip cache memories has led researchers to

investigate their performance in the presence of manufacturing defects. Sev-

eral techniques for yield improvement are discussed and results are presented

which indicate that set-associativity may be used to provide defect -tolerance

as well as improve the cache performance. Tradeoffs between several cache

organizations and replacement strategies are investigated and it is shown that

token-based replacement may be a suitable alternative to the wldely-used LRU

strategy.

1 Introduction

The dramatic increase in cache memory size and diminishing geometries has resulted in

lower yields. Today's high performance processors often have on-chlp cache and conse-

quently the yield of these memories can be a significant factor in determining the ultimate

cost of the processor. One way of increasing yields is to provide defect-tolerance through

the use of redundant resources. Two methods for achieving defect-tolerance are commonly

employed in the design of dynamic RAM (DRAM) memories, namely the use of error cor-

recting codes and spare rows and columns [5]. However, both techniques result in increased

circuitry and possible increases in access times.
Associative memories offer an alternative approach. By design, associative memories

have the flexibility necessary to function in the prescence of defects. With the inclusion

of control logic it is possible to force the memory to operate "around" the defect and use

alternative locations, albeit with a reduction in storage capacity. In the following sections

we will describe basic cache memory operation and then discuss the different techniques

for providing defect-tolerance.

2 Cache Operation

A cache memory is a fast intermediary memory positioned between a processor and main

storage. The goal of a hierarchical memory system is an average access time close to that

of the cache memory, at a cost per bit approaching that of the main memory. To achieve

the former the cache must be designed to keep the most frequently referenced items in the

cache. A system may designed with separate caches for data and instructions or a single

(unified) cache.

1This research was supported by NASA under Space Engineering Research Center Grant NAGW-1406

3.2.2

O,I_N_,L PAGE IS

OF POOR QUALITY

2.1 Org inization

A cachememory is organized as sets of blocks, where each block is typically 4 to 16 bytes

of data from main storage. In a direct-mapped cache each set consists of only one block,

whereas in a n-way, set-associative (SA) cache each set c0nta_ns n blocks. The total cache

size is the product of the block sizE, the number of sets, and the associativity, n.

2.2 Address Translation

Address references to the cache are split into three fields, the widths of which depend

upon the cache size and organization. The block field is Used to index a particular item

within a block and is log 2 b bitswide, where b is the number of addressable Reins wRhin

a block. If s is the number of sets in the cache, then the set field is log 2 S bits wide and _s

used to indicate a particular set of_ access. The remaining b-_ _ rei'_-_ _- _-_ t-_ l_

and are used to distinguis h bet w_ other blocks b_ men memory which may be stored

in the same set. Each block in a set has storage to hold both the block data and the tag

associated with that block. The coUection of tag storage for the cache is referred to as the

tag a_rectory' D_ng a memory access, the tag field for the address is compared with

entrles in the tag directory correspondlng to the refer_ced set. Ii" there is a ma_cii, the

data from the matched block is sent to the processor, If there _S no m_ch, referred t_

a miss, then the misseH data must be loaded from main memory. : ::::_ = :

2.3 Replacement Policy

caused the miss. For a direct-mapped cache the decision is trivial, as each block from

mgl/i Sto-rag-e///ups to a single b-_c-k in _ _cfie. However, witch_ set-associative c_che_

assuming the referenced set is full, there are n possible blocks to replace. One of the best

replacement algorithms is referred to as least recently used (LRU), where the set is treated

as a stack and accessing a particular block moves that block to the top of the stack. The

least recently Used block is always at the bottom of the stack and a miss will load the

data into this block and move it to the top of the stack. Eftlcient implementations of the

LRU replacement algorithm require n(n - 1)/2 bits of storage per set to maintain the n!

possible stack configurations. Consequently, a 4-Way SA cache requirES 6 bits of storage

per set, while an 8-way SA cache requires 28 bits per set. Additional circuitry is needed to

update the stack configuration as a result of an access. Alternative replacement strategies

are first in, first out (FIFO), and random. The FIFO algorithm is implemented using a

modulo b counter for each set, incremented on every miss to that set. One technique for

implementing a pseudo-random replacement strategy is to use a single modulo b counter

for the entire cache and increment it on every miss, regardIess of the set. This will be

referred to as token-based replacement.

m

g

3rd NASA Symposium on VLSI Design 1991 3.2.3

2.4 Discussion

Several observations may be made in comparing direct-mapped caches to set-associative

caches. First, for a given cache size, the tag field and subsequently the tag directory will

be larger for the SA cache. This is because the n-way, set-associative cache will have 1/n

the number of sets as the direct-mapped cache, needing fewer bits in the set field, and

increasing the number of bits in the tag field. Second, for the set-associative cache, n

comparisons must be conducted in parallel between the tag field and the entries in the tag

directory. Furthermore, the set-associative cache has an additional delay over the direct-

mapped cache as a result of the need to multiplex the data from each of the blocks in

the referenced set to the output. Lastly, the SA cache has additional circuitry needed to

implement the replacement algorithm.

3 Defect-Tolerance Strategies

3.1 Spare Resources

There are several methods for implementing memory reconfiguration in the presence of

defects: electrically programmable links, electron-beam programmable fuses, and laser

cutting/welding [6]. These techniques can be employed to bypass faulty resources and

activate spare units. The most common technique for increasing memory yields is to include

spare rows and/or columns in the data array and sufficient programmable decoders. While

all implementations increase the circuit area, some methods may also increase the access

times and power dissipation [5]. Furthermore, unless special circuitry is added it is usually

not possible to test the spare rows/columns without first programming the decoders.

It has recently been observered that manufacturing "throughput", measured in usable

chips per unit time, is dominated by the delay associated with repairing defective parts

rather than the process yield [2]. These researchers argue that efforts should be directed

at maximizing the throughput, rather than the yield, and propose algorithms for achieving

this by balancing repair time and yield of repaired parts. Previously, production experience

with a 64K DRAM indicated that the repair algorithm typically took several seconds and

represented roughly half of the entire test time [10]. The next two sections describe methods

which eliminate the time needed to execute a repair algorithm.

3.2 Error Correcting Codes

Error correcting codes can be used to correct single or multiple errors in the tag directory

and data array caused by manufacturing defects. Codes may be selected to provide a

guaranteed level of protection at a corresponding increase in circuit area and access time.

A 16-bit word would require 6 extra check bits to detect and correct all single errors.

In addition to storing the check bits, additional circuitry is needed to encode or decode

during memory accesses. For large words, where the use of check bits is most efficient,

the delay associated with this circuitry can be significant. Results of a timing analysis are

3.2.4

presented in [11] which indicate a 20% increase in access time using single error correction,

double error detection coding of the tag directory and data array. For these reasons, error

correcting coding is generally reserved for applications which require tolerance of transient

errors incurred during normal operation. However, Mostek built a 1-Mbit ROM with a
32-bit word that achieved a 3-foId _" _Improvement m yldd at a 20-°/o increase in area [8].-

A distinct advantage of error correcting coding is the lack of any "repair" time. As men-

tioned earlier, the delay associated with this process can severely affect the manufacturing
throughput for the part.

3.3 Associativity

Sohi observed that a cache memory does not have to be defect free to meet its objective,

namely reduce the average memory access time of a hierarchical memory system [11].

A direct-mapped cache memory with a defective b!ock will never be able to hold items

from main memory which map to that set in the cache. For a cache to operate properly

under this condition two things are necessary: one, the cache must be able to recognize

a defective block and generate a miss and two, must have the capability of performing a

load through, so that the processor can access the item. An associative cache has alternate

locations within a set which can be used when there is a defective block present. Ideally,

the circuitry which implements the replacement algorithm would be modjified at test t_me

to exclude defective biocks from selection during replacement. Provided each set has at

least one good block all items from main memory can map to a good location in the cache.

4 Related Work

Patterson et al. described the implementation of a cache memory in which each cache block

was provided wl_ffLafault tolerant bit, which could permanently invalidate a cache block.

Set-associativity was achieved through the use of multiple chlps-an-d bIock replacement

was directed by a token [7]. Accessing a bad block would result in a miss.

More recently, Bergh et al. designed a fully associative fault-tolerant memory. Extra

logic, amounting to a 2% increase in area, allowed the memory to completely bypass

defective locations transparent to the user [1].

Finally, Sohi investigated the performance under defects, as measured by miss ratio,

of three different cache organizations: direct-mapped, 2-way set-associative, and fury-

associative [11]. His research illustrated that it is possible for a 2-way set-associative cache,

using a LRU replacement strategy, to outperform a direct-mapped cache of eqnivalent size

in the presence of defects.

This paper attempts to extend the work of Sold_' in evaluating the benefits of associa-

tivity for the purpose of defect-tolerance. In this paper I focus upon set-associative cache

memories for the following reasons:

• fully-associative caches are genera_y not required for many applications and are

prohibitively expensive;

E

3rd NASA Symposium on VLSI Design 1991 3.2.5

% Change in Hits Compared to 2K, DM Cache

Si eI1I (words)

2K

4K

8K

DM II 2-way_A

[_en II LRU IFIFO IToken

0 22 17 is 35 2.s 29
5.0 7.6 7.2 7.2 8.8 8.2 8.2

9.6 12.0 11.7 11.8 13.1 12.6 12.7

Table 1: Performance of Defect-free Caches

• set-associative caches possess the flexibility necessary to reduce the impact of defects.

Specifically, this paper investigates set-associative caches of various organizations under

three different replacement strategies, least recently used (LRU), first-ln, first-out (FIFO)

and token-based. The LRU strategy is widely accepted as the superior strategy, although

costlier to implement [9].

5 Simulation Methods

Performance evaluation was conducted using address trace simulation. The address traces

were generated from runs of SPICE, gcc, and TEX , for a total of over 2.8 million references,

approximately 75% of which were instruction references [3]. All address references were

assumed to reference items of the same size, namely one word. A wide variety of caches

were studied; however, in all cases the block size was held at 8 words and the cache was

treated as a unified cache (instructions and data).

Three different cache sizes were simulated, ranging in size from 2K words to 8K words.

For each size, three different cache structures were investigated: direct-map, 2-way set-

associative, and 4-way set-associative. Each associative cache was simulated using three

different replacement strategies: least recently used (LRU), first in, first out (FIFO), and

token-based. Lastly, each associative cache was simulated under three different levels of

defects, ranging from zero to 25%.

During defect simulation each cache was simulated forty times, each iteration using a

random distribution of defects. Furthermore, defect-levels were limited and the defects

distributed such that each set was guaranteed to have at least one good block. The

replacement strategies were modified from the traditional descriptions to prevent loading

a missed block into a defective location.

6 Results

6.1 Defect-free Performance

Table 1 shows the percent change in the total number of hits for various cache organizations,

relative to the total number of hits for a 2K, direct-mapped (DM) cache. From this data we

can make several observations regarding the relative performances of various organizations

under defect-free operation:

3.2.6

% Change h_ Hits Compared to 2K, DM Cache

' Size 2-way, SA 4-way, SA

(words) ILRU I FIFO IToken IILRU [FIFO [!token

2K -1.0 -1.4 -1.6 1.9 1.2 1.3

4K 5.7 5.4 5.2 7.5 6.9 6.8

8K 10.3 10.1 9.9 12.0 11.4 11.5

Tabie 2: i_erformance with 12.5% Defect-Level

As cache size doubled there was approximately a 5% increase in hits, relative to

a 2K, DM cache, across all structures and replacement algorithms. However, this

effect would eventually diminish as the cache size approached that of the worldoad's

working set.

The token-based replacement algoritllm Was virtually identlcai in performance to tee

FIFO algorithm i_or all cacheorganizations. While at first this may seem surprislng,

neither algorithm is a "usage based" algorithm and consequently their performance

is r0ugllly equivalent.

LRU was the best replacement strategy, increasing the performanceby roughly 0.5%

over the other algorithms. For a fixed cache size, the performance difference increased

with associativity. As the number of blocks per set increased, LRU's superior man-

agement of those resources became more apparent. For a fixed associativity, n, the

improvement decreased with increasing cache size. This may be attributed to reduced

contention in the cache:

• Doubling the associativity increased performance by approximately 2%, with the im-

provement diminishing as the associativity increaseci. Again, tixis may be-att_-buied
to reduced contention within the cache.

As cache size increases, there is less contention for space in the cache and performance

differences due to associativlty and replacement strategies tend to diminish. The same is

true for a fixed cache size as associativity increases, particularly under LRU replacement.

6.2 Performance under Defects

Tables 2 and 3 detail the results of simulating various cache organizations under two

different defect-levels. As in the first table, the numbers represent the percent change in

the total number of hits, relative to a defect-free, 2K, DM cache. At the 12.5% defect-level,

there was a drop in performance that was a function of both cache size and associativity,

but not replacement strategy. For example, all 2K, 4-way, SA caches experienced a decline

of approximately 1.6% from their defect-free performance. This can be attributed to the

fact that each replacement algorithm was modified such that missed data would never be

loaded into a defective block. The average number of bad blocks per set is equal to the

product of the associativity and the defect-level. So at a 12.5% defect-level a 2-way cache

3rd NASA Symposium on VLSI Design 1991 3.2.7

% Change in Hits Compared to 2K, DM Cache

Size l[2-way, SA 4-way, SA_

(words)I en II IFrFo [T°ke"
2K -4.1 -4.4 -4.7 0.2 -0.5 -0.4

4K 3.8 3.6 3.4 6.0 5.4 5.3

8K 8.5 8.4 8.0 10.7 10.2 10.1

Table 3: Performance with 25% Defect-Level

will have, on average, 0.25 bad blocks per set, or one bad block for every four sets, while

a 4-way cache will average one bad block for every other line. Consequently, the effect of

defects is to decrease the associativity. At low defect-levels, and particularly for low values

of associativity, the decrease will be minor and thus the performance differences between

replacement algorithms will remain approximately constant.

In general, the larger the associativity or the total cache size, the smaller the drop in

performance due to defects. Increasing associativity or size are two methods for reducing

contention in a cache and consequently it is expected that defects would have a lesser effect

on these caches. Another important observation, is that all 4-way, SA, 2K caches, regard-

less of replacement algorithm, outperformed the defect-free, DM, 2K cache. Furthermore,

for caches larger than 2K, all associative caches with a 12.5% defect-level outperformed a

defect free DM cache of equivalent size. This is a clear example of using associativity to

provide defect-tolerance and a performance improvement. At a defect-level of 25%, only

the 4-way, set-associative caches outperformed the defect-free, DM caches.

Other researchers have suggested that the use of associative cache memory may be on

the decline because as cache memories increase in size the performance difference between

direct-mapped and set-associative will decrease [4]. Furthermore_ a DM cache is always

smaller and faster than a SA cache of equivalent capacity_ due to the extra circuitry required

to implement the associativity. From our limited trims it is difficult to validate such a trend

in performance. An 8K, DM cache had 9.6% more hits than a 2K, DM cache, whereas the

2-way, SA cache had 12% more and the 4-way had 13% more. These differences are similar

to the differences observed for 2K caches. Of course, common sense dictates that as the

cache size approaches the size of the working set the differences will diminish. While this

may occur soon for board level cache memories, the author suspects that on-chip cache

will continue to benefit from the use of associat.iyity, due to size limitations. Doubling the

associativity and halving the number of sets requires less area than doubling the cache

capacity.

7 Summary

The results indicate that a set-associative cache can experience a significant number of

defects and still exceed the performance of a direct-mapped cache of equivalent capacity.

Secondly, although the LRU replacement strategy performed better than FIFO or token-

based replacement, the modest improvement, particularly at lower associativities and large

3.2.8

cache sizes, may not warrant the increase in control logic.

The fundamental question is: "Should associativity be used to increase manufacturing

yields instead of spare rows and columns?" To answer this, one needs to develop a cost

function capable of reflecting the impact of manufacturing throughput, circuit character-

istics (power, size, speed), _andCaCi_e performance as measuredby miss ratio. Several

observations may be made:

If the cache access time is critical and the application c_ not tolerate the additional

delay imposed by associativity then spare rows and columns are the only alternative

for increasing yields.

• If the chosen technology has matured to the point where manufacturing throughput

is not severely affected by the time needed to repair devices, then spare rows and

columns are probably the logical selection. A repaired part will be guaranteed to

have a full set of defect-free blocks and will have known performance characteristics.

• If, on the other hand, manufacturing throughput is poor, due either to low yields

or lengthy repair times, then using aSsociati_vit-y may be viable alternative to using

spare rows and columns. By doubling the associativity and halving the number of

sets, cache performance can be improved even in the presence of ciefective blocks.

Repair time will be minimal and simply involve marking defective blocks as unusable.

Research is being considered to evaluate the area overhead associated with enhancing
the replacement algorithms to avoid defective blocks.

Perhaps the biggestdeterrent to using this approach may be the difficulty in marketing

such a device. Customers expect devices to be 100% defect-free and might be unwilling to

order parts which are guaranteed to have % maximum defect-level," particularly as two

devices with the same defect-level will not perform identically on the same workload.

References

[1] Harald Bergh et al, "A fauit-to!erant associative memory with high-speed operation,

" IEEE Journal of Solid:State Circuits, pages 9_2 -919, August _990. :

[2] Ramsey W. Haddad et al, " Increased throughput for the testing and repair of RAM's

with redundancy, " IEEE Transactions on Computers, pages 154- 166, February
1991.

[3] John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative

Approach, Morgan Kaufmann Publishers, 1990.

[4] Mark D. Hill, " A case for direct-mapped caches, " IEEE Computer, pages 25 - 40,
December 1988.

[5] Will R. Moore, " A review of fau!t-tolerant techiniques for the enhancement of inte-

grated circuit yield, " Proceedings of the IEEE, pages 684 - 698, May 1986.

3rd NASA Symposium on VLSI Design 1991 3.2.9

[6] R. Negrini et al, Fault Tolerance Throu9 h Reconfiguration in VLM and WSI ArrayJ,

chapter 4, The MIT Press, 1989.

[7] David A. Patterson et al, " Architecture of a VLSI instruction cache for a RISC, " In

Proceedings of the Tenth Annual Symposium on Computer Architecure, pages 108 -

116, June 1983.

[8] T. Shinoda et al, " A 1Mb ROM with on-chip EEC for yield enhancement," In IEEE

International Solid State Circuits Conference, pages 158 - 159, February 1982.

[9] Alan Jay Smith, " Cache memories, " ACM Computin9 Surveys, pages 473 - 530,

September 1982.

[10] Robert T. Smith et al, " Laser programmable reduncaney and yield improvement in a

64K DRAM," IEEE CJounral of Solid-State Circuits, pages 506 - 514, October 1981.

[11] Gurindar S. Sohi, " Cache memory organization to enhance the yield of high-

performance VLSI processors, " IEEE Transactions on Computers, pages 484 - 492,

April 1989.

mm

